Registrasi Point Cloud Objek Berkontur Menggunakan Metode Red Green Blue Color Iterative Closest Point
Abstract
pemberian nilai bobot warna 0,5 sampai dengan 4, menujukkan prosentase penurunan nilai residual error rata – rata sebesar 3,395% Hal ini menunjukkan bahwa adanya penambahan fitur warna RGB dapat meningkatkan akurasi registrasi
Full Text:
PDFReferences
Arun. K. S., Huang, T. S., Blostein, S. D. (1987)., “Least-Squares Fitting of Two 3-D Point Sets”. IEEE Transactions on Pattern Analysis and Machine Intelligence vol. PAMI-9, No. 5, 698 – 700.
Besl, P. and McKay, N (1992). “A Method for Registration of 3-D Shapes”.IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, hal 239 – 256
Chen, Y and Medioni, G (1992), “Object Modelling by Registration of Multiple Range Images”, Image Vision Computer, vol. 10, no. 3, hal 145 – 155.
Duoadi, L., Aldon, M. J. dan Crosnier, A. (2006), “Pair-wise Registration of 3D/Color Data Sets with ICP”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China
Godin, G., Rioux, M dan Baribeau, R. (1994), “Three-Dimensional Registration Using Range and Intensity Information”, Proceedings of SPIE, Vol. 2350, SPIE. Hal 279 – 290
Goshtasby, Ardeshir (2005), “2-D and 3-D Image Registration for Medical, Remote Sensing and Industrial Applications”. A John Wiley & Sons, Inc. Hoboken, New Jersey
Johnson, A. E dan Kang, S. B (1997), “Registration and Integration of textured 3-D Data”, International Conference on Recent Advanves on 3- D Digital Imaging and Modeling, hal. 234.
Linsen, Lars (2001), “Point Cloud Representation”, Universitat Karlsruhe, Germany
Zhang, Zhengyou (1994), “Iterative Point Matching for Registration of FreeForm Curves”, IJCV, vol. 13, no. 2, hal. 119 – 152
Refbacks
- There are currently no refbacks.